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1. FORWARD

The aim of this study has been to develop mathematical techniques that
can be used to analyze the responses of materials whose transmitting
properties vary rapidly in space and time, either because of inherent
inhomogeneities in the material or because of inhomogeneities induced by
nonlinearity

The dynamic response of a material whose physical properties vary is

usually very difficult to analyze. Even when the material response is

elastic and linear, with elastic moduli varying in a known way from point to

point, it is only possible to analyze the simplest of problems: either the

moduli must be piecewise constant, as in laminates, or they must be slowly

varying. Similarly, if the transmitting properties of the material are

strongly temperature dependent, and the temperature is varying rapidly in

space and time, only the simplest of problems can be analyzed. Such problems

become even more complex when the material response is also nonlinear. Then,

essentially, the nonlinearity induces inhomogeneities in space and time that

are not known a priori but must be determined as part of the overall

solution to the problem.

In the course of this research we have developed mathematical

procedures that can be used to analyze a wide variety of physical processes

in strongly inhomogeneous materials. Although the main emphasis has been on

problems involving wave propagation in diverse materials, the techniques

have also been used to study the problem of heat conduction in strongly

stratified materials, and also static (elliptic) problems associated with

inhomogeneous materials.
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2. SUMMARY OF COMPLETED RESEARCH
2.1 Elastic waves in materials whose properties vary in space.

In its simplest form, the equation governing uni-directional stretching, or
shear, waves in an inhomogeneous elastic material can be written as

a 8~xOW w
p (Esx) = p(x) . (1)

w(x,t) denotes the displacement of the particle x at time t, E(x) denotes
the dynamic modulus of the material, and p(x) denotes the density of the
material in its undeformed state. Until recently, the only types of problems
that could be easily analyzed using equations such as (1) were those
involving laminated materials, for which E(x) and p(x) are piecewise

constant, and those for which E(x) and p(x) are varying slowly.
During the course of this research we have developed general procedures

that can be used to obtain a representation for solutions to equations such
as (1) without having to restrict the forms of the coefficints E(x) and
p(x). Briefly, the technique amounts to expanding these coefficients in
terms of a series of functions. These are chosen so that if the
approximating series are terminated at any stage then the general solution
to the resulting equation can be written in terms of the solution to the
wave equation with constant coefficients. The representations obtained can
be used to analyze many technically important deformations. The results
have been generalised so that they can be used to construct solutions to
equations governing processes in anisotropic, inhomogeneous materials. The
processes are governed by an equation for a function w(x,,x 2,..,t) which can
be written in the form

S,(x) w + 1 8W aw(X AW +# w (_( )WI y(x +-]
xwx2  + 1 + [a2(X2)ax2 + '62(X2) + 2( 2 )W]+

1 2 2

aow + aw + a- a w  +... (2)"a0 t 2at 2

This work was described in [1].



2.2 Elastic waves in materials whose properties vary with temperature.

In many technically important problems stress waves are produced by

rapidly heating the material. In its simplest form the mathematical problem

reduces to solving an equation of the form

a aw w_35_ (Et x a 5Wx,)pXx)! W _ W(fWx)) '  (3)

6t2

where the temperature 8(x,t) satisfies the diffusion equation

= c(x)a. (4)

Equation (4), which is of the form (2), can be analyzed by the techniques

described in [1]. The resulting equation for w(x,t) can be written as

a a aw 2wux , t)-J - p(x)- = S(x,t). (5)
8t

In [2] we have generalised some of the techniques described in [1] to

analyze such equations.

2.3 The propagation of large amplitude shock waves and elastic-plastic

boundaries in rate independent materials.

In a series of papers ([5] - [9]) we have developed mathematical

techniques that can be used to analyze the diverse nonlinear wave

interactions that can occur when a slab of elastic-plastic material is

finitely deformed by the passage of plane waves propagating in directions

normal to the material interfaces that bound the slab. Typically, the slab

could be contained between two other different elastic-plastic materials

which, essentially, are of semi-infinite extent in the direction in which

the wave propagates. Alternatively, the slab could be just one layer in a

multi-layered material. In the .ourse of this research we have extended the

results described in [5] - (9] to account for the presence of strong shock

waves and elastic - plastic boundaries.



In its simplest form, the equation governing the variation in stress,

a(x,t), in a nonlinear but rate independent material is the nonlinear wave

equation

(a) a _ ao2a (6)

S(a) is a material function which is different during loading and

unloading.By using the hodograph techniques together with the techniques

described in [1], we have been able to construct efficient procedures for
analyzing deformations governed by equations such as (6) even when strong

shock waves and elastic plastic boundaries are present. For example, if a
shock is formed by impacting one end of a slab and then moves into an

undisturbed region we are able to track its path and calculate its strength

by solving linear ordinary differential equations. The coefficients in this
equation depend on the material function S(a) and also on the variation in a

at the surface of the slab. The corresponding problem has also been solved
when the propagating surface of discontinuity is an elastic - plastic

boundary. A paper on this aspect of our work is being prepared.

2.4 Waves in visco - plastic materials.

The dynamic responses of many materials are strongly rate dependent -

even in deformations that are produced by impact. In [3] and [4] we have

analyzed wave motions in visco - plastic materials for which the stress
a(x,t) and material velocity u(x,t) satisfied equations of the form

Oa _ au aa- = P a-u-' and d-u = S(a)a- + wo(o). (7)

p is a constant while S(o) and wo(a) are material functions. It was shown

that for certain special forms of S and o, which correspond to physically

reasonable nonlinear behavior, any solution to (7) can be expressed in terms

of a corresponding solution to the linear telegraph equation. This fact has

been used to investigate the combined effects of nonlinearity and viscosity
on a wide variety of technically important deformations.



2.5 Adiabatic shear.

Adiabatic shear banding is a form of material instability that occurs

during the rapid deformation of a wide variety of thermo - plastic
materials. When a slab of such a material is subjected to a pure homogeneous
simple shear at a high constant rate of shear, the shear force needed to

produce the deformation at first increases with increasing time. However, it
may happen that with continuing deformation the shear stress reaches a peak
and thereafter continues to decrease. This phenomena occurs when the effect
of thermal softening dominates that of work hardening. During this stage the
pure homogenous deformation is unstable: some initially small perturbation
to the deformation can grow by extracting energy from the ambient
deformation. The form of the instability can be spectacular: energy is
focused toward isolated zones where the temperature soars.

In collaboration with Dr. Timothy Wright at A.R.O a theory has been
developed which describes the main features of these shear band
instabilities.

2.6 A method for solving singular integro - differential equations

During the course of the research on layered materials we were required
many times to solve certain singular integro - differential equations. Such
equations occur throughout the study of problems involving interfaces -

especially in static problems involving composites. In [10] we described a
general procedure for solving such equations.
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